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We propose a graph method for the analysis of electronic surface states in a complex basis superlattice
terminated by surface with a multilayer clad. Using topology theory, we frame an energy equation for calcu-
lating the surface modes based on a graph model. Compared to the traditional methods, the present method
does not have the problem of numerical instability for finding out the surface states of the superlattices. The
other advantage is that the localized states are directly solved by the present method without spurious solutions,
which usually exist in the solutions obtained by traditional methods. Numerical examples show removal of the
spurious solutions by traditional methods may cause numerically instable and incorrect results.
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Semiconductor superlattices have been extensively re-
searched and applied to microelectronics in recent years.
Much attention has been paid to the characteristics of elec-
tron motion for the disturbed periodic superlattices, includ-
ing terminated or defect structures �1–13�. Determination of
the existence and properties of the localized electron states in
semi-infinite superlattices can help fundamental physics ex-
amine the effect of the surface and defect on semi-infinite
and finite superlattices �2–13�. For the terminated binary su-
perlattices, the energy equation for surface states has been
framed in analytical form �3,4�. The eigenenergy of each
localized state can be determined according to the expres-
sion. Recently, polytype superlattices, composed of multiple
layers in each cell, have received great interest in applica-
tions of high performance semiconductors �14,15�. For su-
perlattices with a complex basis, various numerical methods
have been applied to solve the localized states �16–19�. Of
those methods, the transfer matrix method �2–4,19�, is one of
the most popular methods since it is easy to draw up the
energy equation even for a great number of layers in the
basis. However, the transfer matrix method suffers from nu-
merical instability during calculation. Various schemes have
been proposed to avoid the numerical instability problem but
the analysis works will be more complex. Moreover, in tra-
ditional methods, the eigenvalues solved by the energy equa-
tion of the terminated superlattice usually include not only
the actual roots but also the spurious ones. It is tedious to
find out the spurious solutions from all of the solved roots
using the condition of eigenfunction decay.

Graph theory �20,21� has been used to solve linear equa-
tions and analyze networks for a long time, but it is incon-
venient for most of the applications. To our knowledge, the
graph theory has not been applied on the analysis of elec-
tronic surface states of superlattices. In this study, we pro-
pose an eigenenergy equation for the surface states of the
terminated superlattices based on the graph theory. More-
over, the eigenenergies for the surface states solved by the
present equation include only actual roots without spurious
ones.

A semi-infinite superlattice with N layers a cell and ter-
minated at the left as shown in Fig. 1 is considered. We first
study the behavior of electron motion in the part of the clad
structure. The potential barrier heights, effective mass val-
ues, and thicknesses for layer j of the clad structure are Uc,j,
mc,j

* , and dc,j, respectively. Using envelope-function approxi-
mation, the motion of an electron in the vicinity of the
conduction band bottom for layer j of the clad can be ex-
pressed by a wave function ��c , j ,z�=ac,je

ikc,j�z−zc,j−1�

+bc,je
−ikc,j�z−zc,j−1�, where kc,j =�−1�2mc,j

* �E−Uc,j��1/2. Here we
define ��c , j ,zc,j� and �me

* /kemc,j
* ����c , j ,zc,j� as �c,j and �c,j,

respectively, in which ke=�−1�2me
*Ee�1/2, me

* is the electron
mass, and Ee is a reference energy that is arbitrarily set as
1 eV. By the reference energy, these wave functions and
their slope at the boundary of layer j can be expressed by
dimensionless relations as

� �c,j

�c,j−1
� = � f j hj

gj f j
���c,j−1

�c,j
� , �1�

where f j, gj, and hj are equal to sec kc,jdc,j, � j tan kc,jdc,j, and
� j

−1 tan kc,jdc,j, respectively, and � j =kc,jme
* / �kemc,j

* �. The re-
lations given in Eq. �1� can be represented by a two-way
graph model as shown in Fig. 2. According to Bastard’s
boundary conditions, �c,j and �c,j are continued at the inter-
section of layer j and j+1. Thus the graph models for all of
the layers in the clad can be connected and expressed by

��c,Nc

�c,0
� = � fc hc

gc fc
�� �c,0

�c,Nc

� , �2�

where fc, gc, and hc can be calculated by the graph
theory �20,21� based on the graph model for the clad
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FIG. 1. Potential profile of an N-layer basis superlattice termi-
nated by the surface and an Nc-layer clad barrier.
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as �	 j=1
Nc f j� /S1,Nc, �
p=1

Nc gpSp,Nc	 j=1
p−1f j

2� /S1,Nc, and
�
p=1

Nc hpS1,p	 j=p+1
Nc f j

2� /S1,Nc, in which Sp,q is the determi-
nant of a part of the graph model for the structure
from layers p to q given by Sp,q

=
v=0
q−p
i2v=p+v

q 
i2v−1=p+v−1
i2v−1

¯ ·
i2=p+1
i3 
i1=p

i2−1	u=1
v �−Gi2u−1,i2u

� and

Gp,q is hpgq	 j=p
q f j

2.
For the surface barrier, it is assumed there is no rightward

wave coming from the left-hand side �LHS�. If the wave
function in the surface barrier is expressed by ��c ,0 ,z�
=bc,0e−ikc,0z, we have �c,0=−ikc,0me

*�c,0 / �kemc,0
* �. According

to Eq. �2�, the relation between �c,Nc
and �c,Nc

determined by
the terminated structure is �c,Nc

=�c,Nc
�hc−kemc,0

* fc
2 / �ikc,0me

*

+kemc,0
* gc��.

For the periodic superlattice connected to the right-hand
side �RHS� of the surface cell, we can represent the relations
between �1,0 and �1,0 as �1,0=Rs�1,0. From the connection of
the terminated structure and the superlattice, we have �c,Nc
=�1,0 and �c,Nc

=�1,0. Thus, the eigenvalue equation for the
surface mode is

1 − Rs�hc −
kemc,0

* fc
2

ikc,0me
* + kemc,0

* gc
� = 0. �3�

We next look at the electron motion in the periodic super-
lattices, which is connected to the right end of the clad struc-
ture as described in Fig. 1. In each cell of the superlattice, the
potential barrier heights, effective mass values, and thick-
nesses for layer j of each cell are Us,j, ms,j

* , and ds,j, respec-
tively. For the periodic superlattices, the wave functions in
layer j of cell n can be expressed by the same forms as Eqs.
�1� and �2�, respectively, with c replaced by n. In the same
way, we represent the wave functions at the boundary of cell
1 by the forms

��1,N

�1,0
� = � fs hs

gs fs
���1,0

�1,N
� , �4�

where �1,j and �1,j are defined by ��1, j ,z1,j� and
me

*���1, j ,z1,j� / �kems,j
* �, respectively.

According to Floquet’s theorem, the envelope functions in
a periodic system must obey the Bloch waves. For cell 1 of
the periodical superlattice, we can write the relations of the
envelope functions at the right and left ends of the cell as
�1,N=�1,0 exp�iKL� and �1,0=�1,N exp�−iKL�. By substitut-
ing the relation of �1,N and �1,0 into Eq. �4� and using the
relation of �1,0=Rs�1,0, we have

Rs =
gs

1 − fse
iKL . �5�

Substituting �1,N=�1,0 exp�iKL� and �1,0=�1,N exp�−iKL�
into Eq. �4�, we have fse

2iKL−�se
iKL+ fs=0, where �s=1

−gshs+ fs
2. Thus, the solution of the Bloch phase is given by

eiKL= ��s± ��s
2−4fs

2�1/2� / �2fs�. Since the eigenfunction in the
superlattice decays with the increase of the distance from the
surface, the absolute value of the exponential function should
be less than one, eiKL�1. Thus, only one of the � signs in
the solution is reasonable. If the sign 	 is chosen for �s

0 and � for �s�0, the absolute value of eiKL will be less
than 1. So, the reasonable eiKL is changed by a sign-number
function � and rewritten in the form

eiKL =
�s − ���s

2 − 4fs
2�1/2

2fs
, �6�

where � is equal to 1 if the value of �1+gshs− fs
2� is greater

than or equal to zero, and −1 if it is less than zero. Equation
�3� with Eqs. �5� and �6� is the major equation of this paper.

For the numerical performance of the present theory, a
four-layer superlattice made of AlxGa1−xAs and terminated
by a surface of AlAs is first examined. The Al concentration
for each layer is x1=x3=0 and x2=x4=0.5. The width of each
layer is d1=4 nm and d2=d3=d4=2 nm. If we define the
left-hand side of Eq. �3� as the characteristic function Jc, the
roots of Jc=0 are matching to eigenvalues for the surface
modes and shown in Fig. 3. Also, two transfer matrix meth-
ods proposed by StJślicka et al. �2� and Huang et al. �19�,
denoted by TMM-S and TMM-H respectively, are examined
to compare. The energy equations to solve the surface modes
in both transfer matrix methods are rewritten by Jc

�TMM−S�

=0 and Jc
�TMM−H�=0, in which Jc

�TMM−S� is the LHS of Eq.
�4.27� of Ref. �2�, and Jc

�TMM−H� is the LHS of Eq. �14� of
Ref. �19�. Figure 3 shows the characteristic function of the
present method and two transfer matrix methods, Jc,
Jc

�TMM−S�, and Jc
�TMM−H�, for the electron energy from

0 to 1.2 eV. The solutions of the energy equations are found
at the valley approaching zero. From the references, we see
that Jc

�TMM−S� does not include the term of exp�iKL�, but
Jc

�TMM−H� does. However, for a given electron energy, we can
obtain two values of exp�iKL�, denoted by exp�iKL��+� and
exp�iKL��−�. Thus, we have two different values of Jc

�TMM−H�,
marked by Jc

�TMM−H��+� and Jc
�TMM−H��−�, respectively relative

to exp�iKL��+� and exp�iKL��−� for each energy shown in Fig.
3. Since the eigenfunction is decaying with the increase of
the distance from the surface, the absolute value of exp�iKL�
should be less than one. Thus the solutions of the energy
equation, Jc

�TMM−H�=0, corresponding to the function of
exp�iKL� in the condition exp�iKL��1 are spurious solu-
tions. For TMM-S, although exp�iKL� does not appear in the
energy equation, the solved roots also include spurious solu-
tions. The reference offers another criterion. If we rewrite the
LHS of the checking function given in Eq. �4.29� of Ref. �2�
as , the solutions for the surface modes exist under the
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surface
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cNc,ψ1,cψ

cNc,θ1,cθ0,cθ
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0,1θ N,1θ
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FIG. 2. Graph model for the analysis of the terminated superlat-
tice with the surface and a multilayer clad barrier.
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condition �1. The absolute values of exp�iKL��+�,
exp�iKL��−�, and  are shown in Fig. 4. According to the
results of Figs. 3 and 4, we find that the root E=0.2808 eV
for TMM-H is the spurious solution since the absolute value
of exp�iKL� for the solution is greater than 1. For TMM-S,

since the absolute value of  for the solution E=0.2808 eV
is less than 1, both solutions are spurious ones. However,
spurious solutions are not included in the results of the
present method. Table I shows all of the solutions gained by
the present method and compares the transfer matrix meth-
ods for the four-layer superlattice with different bases in each
cell. We see the solutions calculated by TMM-H and TMM-S
include the spurious solutions for various cases but the
present method does not. Moreover, some incorrect solutions
occur in the results by TMM-S because of the numerical
truncation in the computation. The numerical results show
that it is straightforward to accurately calculate the surface
modes of superlattices by the present theory. But, the prob-
lems of incorrect solutions or numerical overflow may occur
in traditional methods.

Next, we study the numerical implementation for a
chirped AlxGa1−xAs superlattice terminated by a surface of
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TABLE I. Calculated energy for the electron surface states in a
four-layer AlxGa1−xAs superlattice terminated by AlAs. In each cell,
the width in each layer is d2=d3=d4=2 nm. The Al concentration in
each layer is x1=x3=0, x2=x4=0.5.

d1

This
method TMM-H TMM-S

E �eV� E �eV� eiKL E �eV� 

4 nm 0.1307 0.1307 0.1675 0.1307 5.9655

0.5426 0.2808a 4.7602 0.2808a 0.2094

0.5426 0.3802 0.5426 2.6267

2 nm none 0.3216a 1.0649 0.2454b 1.0013

0.3216a 0.9768

0.9178b 1.0001

aSpurious solutions.
bIncorrect solutions.
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AlAs, in which the Al concentration of each odd layer is 0
and that of each even layer is 0.5. For each period, the width
of each layer is ds,n=30�1+ �n /N��nm. The present method
and both transfer matrix methods are also applied to solve
the surface modes for the structure with N being changeable
from 2 to 12. From Eq. �3�, we see that the eigenvalue equa-
tions used by the present method are in terms of fs, gs, and
hs. However, by the transfer matrix methods, the eigenvalue
equations are expressed by each element of the global ma-
trix, mi,j

�TMM� for i,j=1,2. Further, since spurious solutions are
included in the solved results of the transfer matrix methods,
the spurious solutions need to be removed according to the
absolute value of exp�iKL� for TMM-H and  for TMM-S.
The upper bounds of the calculation for the surface states in
the superlattice by these three methods are shown in Fig. 5.
The numerical results of Fig. 5 show that using the surface
states equations in the present method to calculate the sur-

face states leads to a better stability property than using the
transfer matrix methods.

In conclusion, we have proposed a graph method to de-
termine the electronic surface states in a complex basis su-
perlattice terminated by the surface and a multilayer clad
barrier. This method has some added benefits compared to
traditional methods. First, based on the present expressions,
it is convenient to calculate each term of the equations with-
out recursive calculation or numerical overflow. Moreover,
the roots solved by the present method do not include spuri-
ous ones. However, calculation of the surface states by the
traditional methods may cause incorrect results or numerical
instability for complex basis superlattices.
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